On Inconsistent $M$-Estimators
نویسندگان
چکیده
منابع مشابه
On M-estimators and normal quantiles
Sydney, NSW 2109, Australia Abstract This paper explores a class of robust estimators of normal quantiles filling the gap between maximum likelihood estimators and empirical quantiles. Our estimators are linear combinations of M-estimators. Their asymptotic variances can be arbitrarily close to variances of the maximum likelihood estimators. Compared with empirical quantiles, the new estimators...
متن کاملA Geometric View on Constrained M -Estimators
We study the estimation error of constrained M -estimators, and derive explicit upper bounds on the expected estimation error determined by the Gaussian width of the constraint set. Both of the cases where the true parameter is on the boundary of the constraint set (matched constraint), and where the true parameter is strictly in the constraint set (mismatched constraint) are considered. For bo...
متن کاملDifferentially Private M-Estimators
This paper studies privacy preserving M-estimators using perturbed histograms. The proposed approach allows the release of a wide class of M-estimators with both differential privacy and statistical utility without knowing a priori the particular inference procedure. The performance of the proposed method is demonstrated through a careful study of the convergence rates. A practical algorithm is...
متن کاملProjection Based M-Estimators
Random Sample Consensus (RANSAC) is the most widely used robust regression algorithm in computer vision. However, RANSAC has a few drawbacks which make it difficult to use for practical applications. Some of these problems have been addressed through improved sampling algorithms or better cost functions, but an important difficulty still remains. The algorithm is not user independent, and requi...
متن کاملRedescending M -estimators
In finite sample studies redescending M -estimators outperform bounded M -estimators (see for example, Andrews et al., 1972). Even though redescenders arise naturally out of the maximum likelihood approach if one uses very heavy-tailed models, the commonly used redescenders have been derived from purely heuristic considerations. Using a recent approach proposed by Shurygin, we studied the optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1982
ISSN: 0090-5364
DOI: 10.1214/aos/1176345786